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ABSTRACT

Electron tomography allows determination of the three-
dimensional structures of cells and tissues at resolutions sig-
nificantly higher than is possible with optical microscopy.
Electron tomograms contain, in principle, vast amounts of
information on the locations and architectures of large num-
bers of subcellular assemblies and organelles. The develop-
ment of reliable quantitative approaches for interpretation
of features in tomograms, is an important problem, but is
a challenging prospect because of the low signal-to-noise
ratios that are inherent to biological electron microscopic
images. As a first step in this direction, we report meth-
ods for the automated statistical analysis of HIV particles
and selected cellular compartments in electron tomograms
recorded from fixed, plastic-embedded sections derived from
HIV-infected human macrophages. Individual features in
the tomogram are segmented using a novel, robust algo-
rithm that finds their boundaries as global minimal surfaces
in a metric space defined by image features. Our expecta-
tion is that such methods will provide tools for semi-automated
detection and statistical evaluation of HIV particles at differ-
ent stages of assembly in the cells, and present opportunities
for correlation with biochemical markers of HIV infection.

1. INTRODUCTION

Transmission electron microscopes have conventionally been
used in biomedical research to obtain two-dimensional pro-
jection images of thin objects such as molecules, cells and
tissues. Such images can be recorded in most modern elec-
tron microscopes at magnifications ranging from � 100x to

� 1,000,000x. The use of electron microscopes, is, how-
ever, not limited to imaging in 2D. Using emerging methods
in electron tomography (see [1] for a recent review), it is
now also possible to routinely determine three-dimensional
structures using principles that are very similar to those used
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in technologies such as computerized axial tomography. Thus,
one can record a series of images of a given object over a
wide range of tilt angles, and combine them using back pro-
jection algorithms to generate three-dimensional volume of
the imaged object.

A key problem in biological electron tomography is that
the images obtained are at relatively low signal-to-noise ra-
tios. In part, this is because of the tremendous complexity
of biological specimens; for example a single human cell
can contain thousands of copies of tens of thousands of pro-
teins packaged in a variety of multi-protein complexes and
organelles of differing shapes and sizes. A second factor
comes from the potential of electrons to damage organic
matter, which necessitates the use of electron doses that are
high enough to obtain measurable contrast, but low enough
to minimize structural damage. The rapid, quantitative in-
terpretation of the vast amount of data in tomograms of cells
and tissues therefore poses a challenging problem. This
issue is becoming increasingly important now because of
the rapid advances in instrument automation that have led
to dramatic enhancements in the speed of data collection.
We are interested in developing approaches for 3D segmen-
tation of features in cellular tomograms that can work ro-
bustly and rapidly despite the low signal-to-noise ratios. As
a test case, we have used tomograms recorded from human
macrophages infected with HIV. The cells were fixed, em-
bedded in plastic, stained with uranyl acetate and lead cit-
rate and sectioned in an ultramicrotome to produce sections
with thicknesses in the range of 150nm to 200 nm. These
sections were placed on an electron microscopic grid coated
with a thin carbon film, and imaged in a Tecnai 12 electron
microscope operating at 120 kV equipped with a LaB � fil-
ament. Tomograms were constructed using standard back-
projection algorithms as implemented in the IMOD recon-
struction package [2].

Figure 1 shows slices from a tomogram recorded from
a small region of cells infected with HIV. Within this slice,
there are several identifiable features which bear a resem-
blance to the slice of either an assembled virion or enclosed
membranous entities with varying interior density relative
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to the cytoplasmic medium. Our goal is to detect these
structures with minimal user bias, analyze them, and estab-
lish correlation of the nature and extent of these features
with progression of viral infection. In this work, we con-
centrate primarily on the segmentation of these features and
basic statistical analysis of their distribution in the volume.

Fig. 1. Four types of features identified manually in a slice
extracted from a tomogram. The tomogram was obtained
from a chemically fixed, plastic-embedded, stained 200 nm
thick section from an HIV-infected macrophage. Each of
them has an envelope that is stained more darkly than the
background. Some such as the one pointed to by the solid
arrow resemble an assembled HIV particle, while others,
such as those pointed to by the dashed arrows are vesicular
in nature and could represent entities that are either precur-
sors or packaging units for the fully assembled virus.

2. 3D TOMOGRAPH SEGMENTATION

As pointed out above, electron tomographic images gener-
ally display very low signal-to-noise ratios, and the task of
segmenting features of interest can be a challenging one.
We are developing new algorithms that can work under these
conditions, as described below.

As all the features of interest have a dark boundary around
them (i.e. only the inside is different), we will use the same
segmentation algorithm to get the boundary, and at the sec-
ond stage, classify them by looking at the interior voxels.
Based on very simple criteria (i.e. average gray value) we
can separate filled from empty structures, and more com-
plex criteria can be used to achieve a finer classification (see
Section 4).

The tomograms are segmented in a semi-automatic fash-
ion: a single point inside each cell is first specified by the
user selecting only those structures that correspond to sim-
ple closed boundaries (this is done by inspection of all slices
in the 3D volume). For each selected point we segment
the surrounding structure using a robust segmentation al-
gorithm described next. Although the detection of interior
points can be done automatically (e.g., from singularities
of the distance function to robust edges), the structure of
the tomograms is so complex (membranes merged together,
boundaries with large gaps, presence of secondary structural
elements, etc.), that it will require intensive post-processing

to eliminate irrelevant objects that are not meaningful for
the subsequent analysis. We should also note that at the
present stage of the investigation, our goal is to select as
many features as possible in order to minimize user bias in
particle selection.

2.1. Segmentation of individual features

The segmentation problem is formulated as the search for
a minimal surface on a metric space that depends on image
features, with the restriction that it contains the specified
interior point. Let’s � denote the 3D surface representing
the boundary. The minimal surface problem is stated as [3]:
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��� � ������� ��������� (1)

where the metric ���
� �"!$# %'&)(+* will signal whether or
not a point is in the boundary of a feature element. Specif-
ically, � will take low values for points located over thin
dark regions and higher values elsewhere in the volume.
The minimal surface � is then encouraged to go through
areas of small � , avoiding regions of high � . As in every en-
ergy minimization setting, two issues have to be addressed:
first, find the appropriate � metric so the surface will follow
the features of interest; and second, solve the minimization
problem to get the globally optimal surface.

2.1.1. Designing the image dependent metric

The goal is to define a metric that captures the local geom-
etry of the image and signals the presence of flat dark areas
which correspond to 3D boundary voxels. Following the
work in [4] we look at eigenvectors and eigenvalues of the
Hessian matrix to characterize the local structure of an im-
age. Let’s ,.- denote the eigenvalue with the / -th smallest
magnitude (i.e. 0 ,�1�03240 ,6570
280 , � 0 ). Plate-like structures
have one predominant eigenvalue and corresponding eigen-
vector in the direction normal to the plane (the direction
where gray value changes the most). The other two eigen-
values have vanishing values and the corresponding eigen-
vectors form an orthogonal basis of the plane. By looking at
the sign of the first eigenvalue, we can tell apart dark plate-
like features ( ,91;: % ) from bright ones ( ,�1=< % ). Com-
bining these factors together we define a geometric measure
function > �7�?�@!A# %'&)(+* as:

>B�DC % ,91E: %F , 5 1
G , 55HG , 5� I 0 ,91�0KJ�LNM6OQPSRUTN�QO (2)

In a post-processing step, a non-maxima suppression algo-
rithm keeps only local maxima of > in the direction per-
pendicular to the plane (this is the 3D extension of the tech-
nique used in the Canny edge detector, see [5]). By keeping



only local maxima in the direction normal to the plane we
obtain a better localized feature indication function.

Observe that the bigger the value of > at a given point,
the stronger the indication that the point may be on the
boundary of a structure. We then choose the metric � to
be ��� >4�?� ����� >��6� G R & where >�� � �

�	��

� ��� is the
normalized measure ( % 2 >��=2 � ), and R is a small con-
stant that prevents � from vanishing, see [6]. As required,� !�� G R for background voxels ( >�� !A% ) and � ! R
for points located on the boundaries of interest ( >�� !�� ).
2.1.2. Finding the minimal surface

Once the metric is defined, we are ready to solve the mini-
mization problem and get the surface � that minimizes the
energy (1). This problem is usually solved in a variational
framework, we compute the Euler-Lagrange equations and
find the optimal way to reduce the energy (1) given an ini-
tial energy state. Unfortunately, this will only find a local
minimizer (the closest one to the initial condition) and can-
not guarantee the convergence to the global minima. Many
algorithms have been proposed in the literature that pro-
vide different mechanisms trying to drive the surface to-
wards the global minima, e.g. [7, 8]. Although they offer
improved performance, they can still get trapped in local
minima. There are a few approaches that guarantee conver-
gence to the global minima in the 2D case (curves on 2D
images), see [6, 9]. For the 3D case, the recent work [10]
finds the global minima for surfaces but requires a pair of
curves that lay on the object as initialization.

Our approach for finding the minimal surface is inspired
by [9], extended to surfaces instead of planar curves. The
only input required by the algorithm is a point inside the
cell. The surface minimization problem is then solved im-
posing the restriction that the initial point should be inside
the surface. A 3D polar coordinate transformation is first
performed with center in the point inside the cell. We then
look for an initial surface guess in polar space, using a tech-
nique similar to the one in [11]. The resulting surface (that
we express in implicit representation) is back-converted from
polar coordinates to the Cartesian grid along with the in-
trinsic distances (computed in the polar domain with the � -
metric). Back on the Cartesian grid, we denote � the im-
plicit surface representation and � the back converted dis-
tances. As a refinement step, � is evolved according to
the following partial differential equation: ���E��� 0 ��� 0 G>�� � � � I ����� & where >�� is the normalized feature indi-
cator function defined before. The curvature term is a regu-
larity constraint and the external advection field � � pushes
the surface towards the minima of the energy (1). The fac-
tor >�� turns the advection term off in voxels that are not on
the boundary ( >�� ! % ), so pure regularization will nicely
fill-in the missing gaps.

The segmentation for each 3D structure is run indepen-
dently and in a serial fashion. The approximate running
time for each of them is less than 3 minutes in a 1.2 Mhz
laptop computer. The processing of the whole volume can
well be parallelized to significantly reduce the computation
time. Some examples are shown in the next section.

3. RESULTS

In Figure 2 we show representative resulting 3D surfaces su-
perposed on top of slices of an unprocessed tomogram. The
segmented surface shows an excellent fit to the boundaries
of the vesicular features. We also show that the segmenta-
tion algorithm can be used to classify the volumes in terms
of the mean internal density, as illustrated in a segmented
2D slice, where the regions are automatically classified (red
and green) based on differing internal average grey values.
We also show a 2D slice of the full tomogram with the seg-
mentation curves superposed, Figure 3.

Fig. 2. Two examples of 3D segmentation of cell structure
generated from a point inside specified by the user. The
right example shows volumes corresponding to low density
(green) and to high density (red).

Fig. 3. We show a slice of the 3D volume with the segmen-
tation curves on top. Two density classes are shown (red
and green) automatically classified according to the average
gray level inside the volumes.

Once all relevant structures are segmented, we can per-
form some simple statistical analysis on the results. As each
volume is obtained as an implicit function, geometry com-
putations (e.g. size, average gray value, shape, etc.) are eas-
ily obtained. In Figure 4 we show histograms of the average



gray level (density) distributions inside the selected volumes
in two different tomograms. Note that we can clearly clas-
sify cells into two classes: the ones with the filled interior
and the empty ones. Furthermore, looking at the spatial dis-
tribution of gray values inside each cell, more sophisticated
criteria can be devised to classify in the different cell types
presented in Section 1.

Fig. 4. Top: Distribution of average gray levels inside seg-
mented regions in two different tomograms from different
regions of the infected cell. Bottom: Distribution of size
in segmented volumes within a tomogram, normalized with
reference to the largest volume in the set.

Figure 4 also shows the size distribution of cells within
each tomogram. Note that as overall thickness of the tomo-
gram is only � 200 nm, and the virion/vesicular entities are

� 100 nm wide, only a few cells are captured completely in-
side the volume. Acquisition of serial tomograms from suc-
cessive sections that are stitched together computationally
should allow analysis of larger volumes, therefore provid-
ing more reliable statistics on the segmented volumes.

4. CONCLUSION

In this paper we have report a new algorithm specifically
designed for the semi-automated segmentation of features
in cellular tomograms obtained by electron microscopy. We
demonstrate this is applicable for the identification and pos-
sible classification of HIV particles in infected macrophages,
and could provide a quantitative basis for analyzing HIV in-
fection.

We are currently acquiring new data to study the evo-
lution of the statistics (see for example Figure 4) when the
virus evolves. In addition to simple statistics such as aver-
age gray value (representing the density inside the region)

and volume, we plan to carry out shape analysis and classi-
fication of the segmented regions using novel computational
approaches for shape statistics being developed in the com-
puter vision literature.
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